

Shrinath Kannan

Fakultät Elektrotechnik und Informationstechnik Lehrstuhl für Elektroenergieversorgung

Impact of modern power electronic household equipment on harmonic resonance in residential LV networks

3. Konferenz des Interessenverbandes Netzimpedanz Dresden, 02.11.2021

Introduction

- Power electronic-based equipment are increasing in residential low-voltage networks
- **Basis:** These equipment exhibit capacitive ٠ behaviour in the 100 Hz – 2 kHz frequency range
- **Consequence:** They interact with distribution transformer impedance producing harmonic resonance
- Harmonic resonance: higher impedance ٠ magnitude
- **Effects:** Harmonic resonance amplifies ٠ prevailing emission levels
- **Need:** Accurate models of household • equipment to analyse resonance characteristics and harmonic propagation

Slide 2

Introduction

- Generic models do not adequately represent:
- time-varying mix of household equipment
- evolution impact of such mixtures on resonances

Work's focus

- To identify time-dependent mix of household equipment
- To analyse the evolution impact of such mixtures on resonances
- To model such mixtures for network-level simulation study

Modelling approach

- Simultaneous connection of many devices ٠
- Time-dependent combination of devices: morning, ٠ noon, evening, and night
- Load demand at fundamental frequency also ٠ changes
- Device operation state decided by two factors: ٠ user's manual control and internal operating point
- LED lamp: only manual operation ٠
- PC/Laptop: manual and internal ٠
- Device selection in a load mixture: probabilistic turn-٠ on time and operational duration—customer behaviour dependent

electric cooker water kettle dishwasher microwave Probabilites of turn-on times coffee maker toaster

am Time

fridge

washing machine

laundry

dryer vacuum cleaner

> ΤV PC

other

consumers electric

lighting

12

Probabilistic turn-on times of various household devices

8 pm 12

dependency

Modelling approach

- Each device's front-end is designed as non-power factor corrected (pfc), passive-pfc, active-pfc, and passive
- Evolution-wise, the topology of devices have changed
- Example: lamps have changed from passive to n-pfc/p-pfc/a-pfc
- Approach specified in [1], provides different time-dependent load mixtures and used in this work
- 9 scenarios: three different loading condition (low, average, and peak) for past, present, and future scenarios

	Device (D)	Dev	Device name Past (A)		Present (B)	Future (C)	
	1	Re	efrigerator	Passive	Passive/a-pfc	a-pfc	
	2		Router	N/A	n-pfc	n-pfc	
	3	Incandescent lamps		Passive	N/A	N/A	
	4	CFL LED		N/A	n-pfc	N/A	
	5			N/A	n-pfc /a-pfc	n-pfc/a-pfc	
	6	PC		n-pfc	p-pfc/a-pfc	a-pfc	
	7	Laptop		N/A	n-pfc	n-pfc	
	8	Hot	olate/Water cooker	Passive	Passive	Passive	
	9	Indu	uction stove	N/A	a-pfc	a-pfc	
	10		TV	n-pfc	n-pfc/ a-pfc	a-pfc	
	11	H	lair dryer	Passive	Passive	Passive	
	12	Vacuum cleaner		Passive	Passive/n-pfc	n-pfc	
			Load scena	arios			
Evolution stage (k)	I (low demand)		II (average demand)		III (peak demand)		
Past (A)	D _{A1} +D _{A3}		$D_{A1}+D_{A3}+D_{A6}$		$D_{A1} + D_{A3} + D_{A6} + D_{A8}$		
Present (B)	D _{B1} +D _{B2} +D _{B4} +D _{B5}		$D_{B1}+D_{B2}+D_{B4}+D_{B5}+D_{B6}$		D _{B1} +D _{B2} +D _{B4} +D _{B5} +D _{B6} +D _{B8} +D _E		
Future (C)	$D_{C1}+D_{C2}+D_{C5}$		$D_{C1} + D_{C2} + D_{C5} + D_{C6}$		$D_{c1}+D_{c2}+D_{c5}+D_{c6}+D_{c9}$		

Modelling approach

- Load mixtures are recreated in laboratory conditions
- Measured impedances for harmonic frequencies is fitted into RL||RLC using curve-fitting
- Cumulative error between measured and fitted impedance is given by:

$$\delta = \left| \frac{\sum_{h=3}^{39} \left| \underline{Z}_{fit}^{(h)} - \underline{Z}_{mes}^{(h)} \right|}{\sum_{h=3}^{39} \left| \underline{Z}_{mes}^{(h)} \right|} \cdot 100 \%$$

• R_1 , R_2 , and C_2 majorly influencing resonance

Measured and fitted impedance of a load mixture

R

Simulation results

Simulation of two networks [2]:

- Urban network, 630 kVA, 180 users
- Rural network, 250 kVA, 30 users
- Load parameters for each scenario applied to all customers
- No resonances in past scenarios for all load conditions (solid)
- Resonances are possible for present (dot) and future (dashed) scenarios
- Magnitude ratio between the actual and extrapolated busbar impedance k_{ADk} is used to quantify resonances

Network harmonic impedance simulated at busbar for different load scenarios

Simulation results

Urban and rural networks

- Present and future scenario have equal likelihood for resonance
- Low and medium loading conditions yield stronger resonance intensities
- Increase in loading reduces resonance frequency and intensity

Comparison

- Lower resonance frequency and higher resonance intensity in urban networks
- This is due to higher number of customers and shorted cable length

Resonance characteristics for various load scenarios								
	U	rban	Rural					
Scenario	f _r (Hz)	$k_{\rm ADk}$	f _r (Hz)	$k_{\rm ADk}$				
IA	N/A	N/A	N/A	N/A				
IB	608	1.47	810	1.32				
IC	656	1.3	881	1.23				
IIA	N/A	N/A	N/A	N/A				
IIB	412	1.27	569	1.25				
IIC	251	1.15	352	1.17				
IIIA	N/A	N/A	N/A	N/A				
IIIB	N/A	N/A	* 358	1.14				
IIIC	284	1.15	413	1.18				

Field measurement results

- Time-dependent characteristics of resonances
- Resonance magnitude highest at night (sleep time)
- Load demand increases from night to day
- Resonance magnitude decreases from night to day
- Consistent characteristics for two consecutive days
- Consistent with the simulation results

Time-dependent resonance characteristics at a PoC in a residential LV network

Summary

- Frequency-domain impedance models for household mixtures representing different timedependent and evolution stages are derived
- Likelihood of resonances increases in present and future scenarios
- Urban networks are prone to slightly severe resonance compared to rural networks

Future works

- More load mixtures to be recreated and measured in lab
- Disparity in user behaviour: random distribution of load mixtures to different households
- Device tolerance and manufacturer disparity: uniform distribution of load parameters
- Flexible reference public low-voltage network

Important references

- [1] J. Dickert and P. Schegner, "A time series probabilistic synthetic load curve model for residential customers," 2011 IEEE PES Trondheim PowerTech Power Technol. a Sustain. Soc. POWERTECH 2011, pp. 1–6, 2011.
- [2] Malekian, K.; Safargholi, F.; Küch, K.; Domagk, M.; Meyer, J.; Hoven, M.: Characteristic parameters and reference networks of German distribution grid (LV, MV, and HV) for power system studies. In: ETG Congress 2017 - Die Energiewende, 2017.

Thank you for your attention

