

Faculty of Electrical Power Systems and High Voltage Engineering Chair of Electrical Power Supply

Measurement-based black-box harmonic stability analysis of commercially available single-phase photovoltaic inverter in public low voltage networks

Elias Kaufhold

1st Conference 2022, Interessenverband Netzimpedanz 7th April 2022

1. Introduction

- 2. Black-box stability analysis
- 3. Probabilistic stability assessment
- 4. Conclusion

Measurement-based black-box harmonic stability analysis of commercially available single-phase photovoltaic inverter in public low voltage networks

1. Introduction Motivation

Trends

- Pursuing climate goals •
 - Replacement of traditional, central energy generation
- Growth of share.. •
 - of photovoltaics
 - of power electronic devices

Challenges

Use of power electronic devices:

- Reduction of damping loads •
- Increase of nonlinearities
- High penetration of inverters in the grid
 - Unwanted shut down of photovoltaic inverters
- Large diversity of inverters •
 - Different behavior due to different design
 - Complex, usually unknown design of circuit and controls
 - Interactions with other inverters/devices

Aim

Prediction of instable inverter conditions

2. Black-box stability analysis Impedance-based analysis

Black-box analysis

- No knowledge about internal structure
 and parameters required
- Measurement-based parameter identification

Impedance-based analysis

- Considers electric impedances
- Suitable for small-signal analyses

Small signal model

Nyquist criterion

Gain margin

Ratio of grid impedance and inverter impedance → Detect intersection

Phase margin

Stable if: $180^{\circ} - \phi_{\rm g} + \phi_{\rm inv} > 0$

Measurement-based black-box harmonic stability analysis of commercially available single-phase photovoltaic inverter in public low voltage networks

Slide 4

2. Black-box stability analysis Laboratory validation – set up

$$L_{\text{test}} = L_1 + 2M + L_2$$

 $R_{\text{test}} = R_1 + R_2$ \rightarrow Flexible and cost-efficient design

2. Black-box stability analysis

Laboratory validation – test cases

Measurement-based black-box harmonic stability analysis of commercially available single-phase photovoltaic inverter in public low voltage networks

Dresden, 07.04.2022

Slide 6

2. Black-box stability analysis

Laboratory validation

Measurement-based black-box harmonic stability analysis of commercially available single-phase photovoltaic inverter in public low voltage networks Dresden, 07.04.2022 Slide 7

3. Probabilistic stability assessment

Inverter impedance amplitudes

- 6 commercially available low-power inverters for rooftop PV applications
- Laboratory measurements up to 39 kHz
- Dependency of impedances on power level

Measurement-based black-box harmonic stability analysis of commercially available single-phase photovoltaic inverter in public low voltage networks

3. Probabilisitc stability assessment Grid impedance measurements

Data from measurement campaign [1]

- About 200 loop impedance measurements in public low-voltage grids
- Measurement sites in Germany, Austria, Switzerland, Czech Republic
- 75 % at junction boxes, 25 % at LV busbars in MV/LV substations
- About 80 %: first resonance peak between 600 Hz and 1.8 kHz

[1] Stiegler, R.; Meyer, J. Schori, S.; Höckel, M.: Survey of network impedance in the frequency range 2-9 kHz in public low voltage networks in AT/CH/CZ/GE. In 25th International Conference on Electricity Distribution, 2019, S.3-6

> Measurement-based black-box harmonic stability analysis of commercially available single-phase photovoltaic inverter in public low voltage networks Dresden, 07.04.2022

3. Probabilistic stability assessment Probabilistic considerations

Application of Nyquist criterion

• *no critical grid – inverter combination found*

However:

- Grid measurements not taken directly at customer terminals, where PV-inverters are usually connected (Grid impedance can be different)
- 2. Grid-connected devices at Point of Connection of inverter might dominate the impedance behavior (more capacitive character)
- 3. Change of impedance seen by inverter, dependent on daytime

Consideration of an additional phase margin of 30°

Measurement-based black-box harmonic stability analysis of commercially available single-phase photovoltaic inverter in public low voltage networks Dresden, 07.04.2022 Slide 10

3. Probabilistic stability assessment **Critical Measurement sites**

More critical sites, if operated at 10 % of rated power

Measurement-based black-box harmonic stability analysis of commercially available single-phase photovoltaic inverter in public low voltage networks Slide 11 Dresden, 07.04.2022

4. Probabilistic stability assessment Grid compatibility index

Grid compatibility index

Index to assess the robustness of inverters with regard to grid integration

 $n_{\rm c}$... number of critical measurement sites $n_{\rm tot}$... number of all considered measurement sites

$$gci = 1 - \frac{n_c}{n_{tot}}$$

N° of inverter	grid-compatibility index gci
1	1
2	0.9669
3	0.9587
4	0.9669
5	0.9256
6	0.9835

Measurement-based black-box harmonic stability analysis of commercially available single-phase photovoltaic inverter in public low voltage networks Dresden, 07.04.2022 Slide 12

5. Conclusion Summary and future work

- Harmonic stability assessment of commercially available photovoltaic inverters
- Laboratory validation of the theory

Dresden, 07.04.2022

- Probabilistic approach for assessment of robustness of inverters for public LV grids
 - Diversity of public low voltage grids considered by extensive measurements
 - Grid operators can estimate grid robustness with respect to their specific grid
- Assessment index provided for grid compatibility (gci)

Future Work

- Expand Database
 - Grid-measurements
 - Inverters
- Study on nonlinearities of inverters

Measurement-based black-box harmonic stability analysis of commercially available

single-phase photovoltaic inverter in public low voltage networks

Thank you for your attention

Elias Kaufhold, Research Associate Institute of Electrical Power Systems and High Voltage Engineering TU Dresden elias.kaufhold@tu-dresden.de

Measurement-based black-box harmonic stability analysis of commercially available single-phase photovoltaic inverter in public low voltage networks Dresden, 07.04.2022 Slide 14

