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Measurements in Transient Conditions

• Harmonic voltage and current highly 
frequency dependent

• No simple impedance function Z(f)                 
 Subcycle Impedance?

• Harmonic measurements in transient 
conditions necessary

• Current PQ standards not applicable
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Metrological Challenges: External Influences

• Interharmonics

• Low frequency communication signals

• Switch mode power supplies and inverters

• Voltage dips and swells

• Fast voltage transients

• Deviations of the mains frequency
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Metrological Challenges: Characterization of measurement transducers
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Metrological Challenges: Digital Spectral Analysis

• Discrete Fourier Transform instead of Fourier 
Series

• Multiplication with rectangular window

• Spectral resolution
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Metrological Challenges: Digital Spectral Analysis

• Discrete Fourier Transform instead of Fourier 
Series

• Multiplication with rectangular window

• Spectral resolution

• Convolution in frequency domain

• Possible distortion of spectrum

Spectral leakage
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Metrological Challenges: Digital Spectral Analysis

• Discrete Fourier Transform instead of Fourier 
Series

• Multiplication with rectangular window

• Spectral resolution

• Convolution in frequency domain

• Possible distortion of spectrum

Spectral leakage

• Synchronization of T with notches in spectrum 
of rectangular window
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Measurements: Spectrum of Voltage and Current



Measurements: Spectrum of Active and Reactive Power
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