

Measurement of Harmonic Power Flows

March 25th, 2021

Jan-Philipp Kitzig and

Gerd Bumiller Hochschule Ruhr West, University of Applied Sciences

Outline

- Harmonics in Voltage and Current
- Harmonic Power Flows in Theory
- Metrological Challenges
- New Approaches
- Measurements

• Caused by non-linear current draw

• Caused by non-linear current draw

Ideal model

Ideal model

Ideal model

Ideal model

Ideal model

Ideal model

Ideal model

• Caused by internal impedance of power source

• Caused by internal impedance of power source

• Caused by internal impedance of power source

Kitzig and Bumiller

350 400 450 500

Kitzig and Bumiller

500

400 450 500

(HRW)

Mains frequency operating ranges

Mains frequency operating ranges

Mains frequency operating ranges

Kitzig and Bumiller

Harmonic Power Flows

• Harmonic voltage and current highly frequency dependent

Kitzig and Bumiller

Harmonic Power Flows

• Harmonic voltage and current highly frequency dependent

No simple impedance function <u>Z</u>(f)
 → Subcycle Impedance?

• Harmonic voltage and current highly frequency dependent

No simple impedance function <u>Z</u>(f)
 → Subcycle Impedance?

• Harmonic measurements in transient conditions necessary

• Harmonic voltage and current highly frequency dependent

No simple impedance function <u>Z</u>(*f*)
 → Subcycle Impedance?

• Harmonic measurements in transient conditions necessary

• Current PQ standards not applicable

• Interharmonics

- Interharmonics
 - Low frequency communication signals

(HRW)

- Interharmonics
 - Low frequency communication signals
 - Switch mode power supplies and inverters

(HRW)

- Interharmonics
 - Low frequency communication signals
 - Switch mode power supplies and inverters
- Voltage dips and swells

- Interharmonics
 - Low frequency communication signals
 - Switch mode power supplies and inverters
- Voltage dips and swells
- Fast voltage transients

- Interharmonics
 - Low frequency communication signals
 - Switch mode power supplies and inverters
- Voltage dips and swells
- Fast voltage transients
- Deviations of the mains frequency

Metrological Challenges: The Measurement Chain

Kitzig and Bumiller

Harmonic Power Flows

Metrological Challenges: The Measurement Chain

Metrological Challenges: The Measurement Chain

Metrological Challenges: Characterization of measurement transducers

Kitzig and Bumiller

Harmonic Power Flows

• Discrete Fourier Transform instead of Fourier Series

• Discrete Fourier Transform instead of Fourier Series

$$v(t) \longrightarrow \underline{c}_{v,k} = \frac{1}{T} \int_{t}^{t+T} \left[v(\tau) e^{-j2\pi k f_n \tau} \right] d\tau$$

• Discrete Fourier Transform instead of Fourier Series

- Discrete Fourier Transform instead of Fourier Series
- Multiplication with rectangular window
 - Spectral resolution

 $\Delta f = \frac{1}{T}$

- Discrete Fourier Transform instead of Fourier Series
- Multiplication with rectangular window
 - Spectral resolution

 $\Delta f = \frac{1}{T}$

- Discrete Fourier Transform instead of Fourier Series
- Multiplication with rectangular window
 - Spectral resolution

 $\Delta f = \frac{1}{T}$

- Discrete Fourier Transform instead of Fourier Series
- Multiplication with rectangular window
 - Spectral resolution

 $\Delta f = \frac{1}{T}$

- Discrete Fourier Transform instead of Fourier Series
- Multiplication with rectangular window
 - Spectral resolution

 $\Delta f = \frac{1}{T}$

- Discrete Fourier Transform instead of Fourier Series
- Multiplication with rectangular window
 - Spectral resolution

 $\Delta f = \frac{1}{T}$

- Convolution in frequency domain
- Possible distortion of spectrum
 - \rightarrow Spectral leakage

- Discrete Fourier Transform instead of Fourier Series
- Multiplication with rectangular window
 - Spectral resolution

 $\Delta f = \frac{1}{T}$

- Convolution in frequency domain
- Possible distortion of spectrum
 →Spectral leakage
- Synchronization of T with notches in spectrum of rectangular window

New Approaches: The Power Quality Measurement System (PQMS)

Measurements: Voltage and Current over time

Kitzig and Bumiller

Harmonic Power Flows

Measurements: Voltage and Current over time

Measurements: Voltage and Current over time

Measurements: Spectrum of Voltage and Current

Measurements: Spectrum of Active and Reactive Power

(HRW)

Kitzig and Bumiller

Harmonic Power Flows

References

- J.-P. Kitzig and G. Bumiller, "Improvement of mains frequency estimation robustness towards ripple control signals," in *IEEE International Workshop on Applied Measurements for Power Systems: 2017 Workshop proceedings*, Liverpool, United Kingdom, 2017, pp. 1–6.
- J.-P. Kitzig, S. Schlaghecke, and G. Bumiller, "Power Quality Measurement System With PMU Functionality Based on Interpolated Sampling," *IEEE Transactions on Instrumentation and Measurement*, vol. 68, no. 4, pp. 1014–1025, 2019.
- J.-P. Kitzig, S. Schlaghecke, and G. Bumiller, "Accuracy of Power Quality Measurement Based on Interpolated Sampling," in 2018 *IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)*, 2018, pp. 1–6.
- J.-P. Kitzig and G. Bumiller, "Evaluation of Power Quality Measurement System Concept using an experimental setup," in 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, May. 2019 - May. 2019, pp. 1–6.
- J.-P. Kitzig and G. Bumiller, "Proof of Concept for Three-Phase Extension of a Mains Frequency Estimation Algorithm," in *IEEE International Workshop on Applied Measurements for Power Systems: 2019 Workshop proceedings*, Aachen, Germany, 2019, pp. 1–6.
- J.-P. Kitzig, J. Paetzold, and G. Bumiller, "Power Quality Analysis in non-stationary mains frequency conditions," in *ETG-Fachbericht*, vol. 158, *Internationaler ETG-Kongress 2019: Das Gesamtsystem im Fokus der Energiewende : 8.-9. Mai 2019, Neckar-Forum, Esslingen am Neckar*, C. Rehtanz, Ed., Berlin: VDE Verlag GmbH, 2019.
- J.-P. Kitzig and G. Bumiller, "Timebase Offset Calibration of Analog-To-Digital Converters for Mains Frequency Measurement," in *3rd International Colloquium on Intelligent Grid Metrology (SMAGRIMET 2020)*, 2020.
- C. Nieß, J.-P. Kitzig, and G. Bumiller, "Phasor Based Zero Crossing Detection of the Mains Fundamental," in *3rd International Colloquium on Intelligent Grid Metrology (SMAGRIMET 2020)*, 2020.

Kitzig and Bumiller

• Accepted and to be published: C. Nieß, J.-P. Kitzig, and G. Bumiller, "Measurement System for Time Variable Subcycle Impedance on Power Lines,", in 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Virtual Conference, May 2021, pp. 1-6.

Thank you for your attention!

Interessenver band Netzimpedanz

